The Convergence of the Best Discrete Linear L_{p} Approximation as $p \rightarrow 1$

Jürgen Fischer
Mathematisches Institut A der Universität Stultgart. Pfaffenwaldring 57. D-7000Stuttgart 80, West Germany
Communicated by: G. Meinardus

Received February 8. 1982

Abstract

It is well known that the best discrete linear L_{p} approximation converges to a special best Chebyshev approximation as $p \rightarrow \infty$. In this paper it is shown that the corresponding result for the case $p \rightarrow 1$ is also true. Furthermore, the special best $L_{\text {, }}$, approximation obtained as the limit is characterized as the unique solution of a nonlinear programming problem on the set of all L_{1} solutions.

1. Introduction

For a given $m \times n$ matrix A (with $m>n$) and $y \in \mathbb{R}^{m}$ the discrete linear L_{p} approximation problem can be stated as minimizing over $\geq n$

$$
\begin{equation*}
\left|A x-y \|_{p}^{p}-\sum_{j}^{m}\right| a_{j}^{\prime} x-\left.y_{j}\right|^{p} . \tag{1.1}
\end{equation*}
$$

where $A^{\prime}=\left(a_{1}, \ldots, a_{m}\right), a_{i} \in \mathbb{R}^{n}$ and $y^{\prime}=\left(y_{1}, \ldots, y_{m}\right)$. Under the general assumption rank $A=n$, the above problem has a unique solution $x(p)$ for $1<p<\infty$. To exclude trivial considerations, we furthermore assume that $y \in\left\{A x \mid x \in \mathbb{F}^{n}\right\}$.

For the two limiting cases $p=1$ (L, problem) and $p=\infty$ (Chebyshev problem), a vector minimizing (1.1) is in general not unique. In 1963 it was shown by Descloux [3] that $\lim _{p, \infty} x(p)=x(\infty)$ exists, even if the Chebyshev solution fails to be unique. Moreover, the so-called "strict Chebyshev solution" $x(\infty)$ can be characterized in a certain sense as the "best of the best" Chebyshev approximations (see also p. 239 ff . in [9| for an extensive discussion).

In this paper the corresponding result for $p \rightarrow 1$ is derived; the basic idea is to use appropriate dual formulations of the L_{p} and L_{1} problems.

Furthermore, the special L_{1} solution $\lim _{p \rightarrow 1} x(p)$ is shown to be the unique solution of an appropriate nonlinear programming problem on the set of all L_{1} solutions and thus can be computed numerically.

In the following $p \rightarrow 1$ is always used in the sense of $p \rightarrow 1+A^{\prime}$ is the transpose of the matrix A, and $\|\cdot\|_{p}$ denotes the L_{p} norm (for $1 \leqslant p \leqslant \infty$) defined in (1.1). For reference we state

Lemma 1.1. (i) $x(p)$ is bounded for $1<p<\infty$.
(ii) Every cluster point of $x(p), p \rightarrow 1$, is an L_{1} solution.

Proof. For $v \in \mathbb{R}^{m}$ and $1 \leqslant p \leqslant \infty$ we have

$$
\begin{equation*}
\|v\|_{\infty} \leqslant\|v\|_{p} \leqslant\|v\|_{1} . \tag{1.2}
\end{equation*}
$$

Let $r(p)=A x(p)-y$ denote the vector of residuals, with $r(\infty)=A x(\infty)-y$. From (1.2) and the optimality of $x(p)$ we obtain that

$$
\|r(p)\|_{\infty} \leqslant\|r(p)\|_{p} \leqslant\|r(\infty)\|_{p} \leqslant\|r(\infty)\|_{1}
$$

for $p>1$, and thus $r(p)$ is bounded. (i) now follows with $x(p)=\left(A^{\prime} A\right)^{-1} A^{\prime}(r(p)+y)$.

With an optimal L_{1} solution \tilde{x} we have $\|r(p)\|_{p} \leqslant\|A \tilde{x}-y\|_{p} \leqslant\|A \tilde{x}-y\|_{1}$ for $p>1$ and therefore $\lim \sup _{p \rightarrow 1}\|r(p)\|_{p} \leqslant\|A \tilde{x}-y\|_{1}$, which implies (ii).

2. Duality Relationships

With the new variables $r_{j}=a_{j}^{\prime} x-y_{j}, j=1, \ldots, m$, the original problem of minimizing (1.1) is transformed into the constrained problem

$$
\begin{equation*}
\min _{(x, r) \in \mathbb{R}^{n}: m}\|r\|_{p}^{p} \quad \text { s.t. } \quad A x-r=y \tag{2.1}
\end{equation*}
$$

Using the Lagrangian

$$
\begin{equation*}
L(x, r ; u)=\|r\|_{p}^{p}+u^{\prime}(A x-r-y) \tag{2.2}
\end{equation*}
$$

the primal problem (2.1) may be written as

$$
\inf _{(x, r)} \sup _{u} L(x, r ; u),
$$

and its dual problem is then given by

$$
\sup _{u} \inf _{(x, r)} L(x, r ; u) .
$$

In the special case of (2.2) we have

$$
\inf _{(x, r)} L(x, r ; u)=\inf _{r}\left\{\|r\|_{p}^{p}-u^{\prime} r\right\}+\inf _{x}\left(A^{\prime} u\right)^{\prime} x-u^{\prime} y
$$

and by elementary calculations we obtain

$$
\inf _{r}\left\{\|r\|_{p}^{p}-u^{\prime} r\right\}=-(1 / q)(1-1 / q)^{u-1}\|u\|_{q}^{u},
$$

where q is related to p via the equation $1 / p+1 / q=1$ and the inf is attained for

$$
\begin{equation*}
r_{j}=(1-1 / q)^{q-1}\left|u_{j}\right|^{q-1} \operatorname{sgn}\left(u_{j}\right), \quad j=1, \ldots, m \tag{2.3}
\end{equation*}
$$

Thus we have

$$
\begin{array}{rlr}
\inf _{(x, r)} L(x, r ; u) & =-(1 / q)(1-1 / q)^{q-1}\|u\|_{q}^{q}-y^{\prime} u \text { if } A^{\prime} u=0, \\
& =-\infty \quad \text { otherwise },
\end{array}
$$

and therefore the dual problem can be finally written as

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{m}}\left\{(1 / q)(1-1 / q)^{q-1}\|u\|_{q}^{q}+y^{\prime} u\right\} \quad \text { s.t. } A^{\prime} u=0 \tag{2.4}
\end{equation*}
$$

Since, for $q>1$, the objective function in (2.4) is strictly convex and tends to $+\infty$ if $\|u\|_{q} \rightarrow \infty$, problem (2.4) has a unique optimal solution $u(q)$ for every $q>1$.

From standard duality theory (see Chapter 8 in $|6|$) and Eq. (2.3) we obtain the following relationship between $x(p)$ and $u(q)$ for $1<p<\infty$:

$$
A x(p)-y=(1-1 / q)^{q-1}\left(\begin{array}{cc}
\left|u_{1}(q)\right|^{q-1} & \operatorname{sgn}\left(u_{1}(q)\right) \tag{2.5}\\
\vdots \\
\left|u_{m}(q)\right|^{q} & \operatorname{sgn}\left(u_{m}(q)\right)
\end{array}\right)
$$

Similarly, for $p=1$, (1.1) can be formulated as the linear problem

$$
\min _{(x, r) \in \mathbb{P}^{n+m}} \sum_{j=1}^{m} r_{j} \quad \text { s.t. } \quad-r_{j} \leqslant a_{j}^{\prime} x-y_{j} \leqslant r_{j}, j=1, \ldots, m,
$$

or, equivalently,

$$
\min _{(x, r)}\left(0^{\prime}, e^{\prime}\right)\binom{x}{r} \quad \text { s.t. }\left(\begin{array}{rr}
A & -I \tag{2.6}\\
-A & -I
\end{array}\right)\binom{x}{r} \leqslant\binom{ y}{-y},
$$

where $e^{\prime}=(1, \ldots, 1)$ and I is the $m \times m$ identity matrix. The dual problem is

$$
\begin{align*}
& \min _{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} m}\left(y^{\prime},-y^{\prime}\right)\binom{u_{1}}{u_{2}} \quad \text { s.t. }\left(\begin{array}{cc}
A^{\prime} & -A^{\prime} \\
-I & -I
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{-e}, \\
& \qquad\binom{u_{1}}{u_{2}} \geqslant 0 \tag{2.7}
\end{align*}
$$

and with $u=u_{1}-u_{2}$ we obtain the simplified form

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{m}} y^{\prime} u \quad \text { s.t. } \quad A^{\prime} u=0,-e \leqslant u \leqslant e \tag{2.8}
\end{equation*}
$$

Here the inequality constraints are equivalent to $\|u\|_{\infty} \leqslant 1$, and u_{1}, u_{2} can be computed from u by $u_{1}=(e+u) / 2, u_{2}=(e-u) / 2$.

3. Some Results Concerning $u(q)$

In this section we show that $\lim _{q \rightarrow \infty} u(q)$ exists. Let $w_{1}>0$ denote the optimal value of the L_{1} problem. Then the optimal value of problem (2.8) is equal to $-w_{1}<0$.

Lemma 3.1. (i) Every cluster point \tilde{u} of $u(q), q \rightarrow \infty$, satisfies $\|\tilde{u}\|_{\infty} \leqslant 1$.
(ii) $\lim _{q \rightarrow \infty} y^{\prime} u(q)=-w_{1}$.

Proof. (i) Let \tilde{u} be a cluster point of $u(q)$ satisfying $\|\tilde{u}\|_{\infty}>1$. Then, for a sequence $\left(q_{k}\right)$ with $\lim _{k \rightarrow \infty} q_{k}=+\infty$ and $\lim _{k \rightarrow \infty} u\left(q_{k}\right)=\tilde{u}$, we have

$$
\lim _{k \rightarrow \infty}\left\{\left(1 / q_{k}\right)\left(1-1 / q_{k}\right)^{q_{k}-1} \sum_{j=1}^{m}\left|u_{j}\left(q_{k}\right)\right|^{q_{k}}+y^{\prime} u\left(q_{k}\right)\right\}=+\infty
$$

which contradicts the fact that the optimal value of problem (2.4) is always negative.
(ii) Multiplying (2.5) by $u(q)$ we obtain

$$
(1-1 / q)^{q-1}\|u(q)\|_{q}^{q}=-y^{\prime} u(q)
$$

and therefore the optimal value of problem (2.4) is equal to $(1-1 / q) y^{\prime} u(q)$. Since every optimal solution \bar{u} of problem (2.8) is feasible for (2.4), we have

$$
(1-1 / q) y^{\prime} u(q) \leqslant(1 / q)(1-1 / q)^{q-1}\|\bar{u}\|_{q}^{q}+y^{\prime} \bar{u}
$$

and thus

$$
\limsup _{q \rightarrow \infty} y^{\prime} u(q) \leqslant y^{\prime} \bar{u}=-w_{1} .
$$

On the other hand, since every cluster point of $u(q)$ is feasible for problem (2.8), we obtain

$$
\liminf _{q \rightarrow \infty} y^{\prime} u(q) \geqslant-w_{1} .
$$

Next we consider the following modification of problem (2.4):

$$
\begin{equation*}
\min _{u \in: \times m}\|u\|_{q}^{u} \quad \text { s.t. } \quad A^{\prime} u=0 . y^{\prime} u=-w_{1} . \tag{3.1}
\end{equation*}
$$

Lemma 3.2. The unique optimal solution of problem (3.1) for $q>1$ is given by

$$
\hat{u}(q)=u(q) / \tau(q), \quad \text { with } \quad \tau(q)=-y^{\prime} u(q) / w_{1} .
$$

Proof. The uniqueness follows from the strict convexity of the objective function. Obviously, $\hat{u}(q)$ is feasible for problem (3.1), and with $u(q)=$ $\tau(q) \hat{u}(q)$ we obtain from (2.5)

$$
A x(p)-y=(1-1 / q)^{q} \quad(\tau(q))^{q} \quad ;\left(\begin{array}{cc}
\left|\hat{u}_{1}(q)\right|^{q} & 1 \\
\operatorname{sgn}\left(\hat{u}_{1}(q)\right) \\
\vdots \\
\left|\hat{u}_{m}(q)\right|^{4} & \operatorname{sgn}\left(\hat{u}_{m}(q)\right)
\end{array}\right)
$$

But this equation implies that the gradient of the objective function of (3.1) at $\hat{u}(q)$ is a linear combination of the gradients of the constraints, and thus $\hat{u}(q)$ satisfies the optimality conditions for problem (3.1).

THEOREM 3.3. (i) $\lim _{q \rightarrow \infty} u(q)=u(\infty)$ exists and is an optimal solution of problem (2.8).
(ii) If $J=\left\{j| | u_{j}(\infty) \mid=1\right\}$ and $\varepsilon_{j}=u_{j}(\infty)$ for $j \in J$, then the set of all optimal solutions of (2.8) is given by

$$
\left\{u \in \mathbb{R}^{m} \mid A^{\prime} u=0,\|u\|_{\infty} \leqslant 1, u_{j}=\varepsilon_{j} \text { for } j \in J\right\}
$$

Proof. Problem (3.1) consists in finding the point of minimal L_{q} norm on the linear manifold $\left\{u \mid A^{\prime} u=0, y^{\prime} u=-w_{1}\right\}$. The results of Descloux $|3|$ then imply that $\lim _{q \rightarrow \infty} \hat{u}(q)=\hat{u}(\infty)$ exists and is equal to the strict Chebyshev solution of the problem

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{m}}\|u\|_{\infty} \quad \text { s.t. } \quad A^{\prime} u=0, y^{\prime} u=-w_{1} \tag{3.2}
\end{equation*}
$$

Lemma 3.1 implies that $\lim _{q \rightarrow \infty} \tau(q)=1$, and therefore $\lim _{4 \cdot \infty} u(q)=u(\infty)$ exists and is equal to $\hat{u}(\infty)$; furthermore, $u(\infty)$ is an optimal solution of
problem (2.8). Since every optimal solution \bar{u} of (2.8) satisfies $\|\bar{u}\|_{\infty}=1$, we have $\|u(\infty)\|_{\infty}=1$, and the set of optimal solutions of (2.8) coincides with that of problem (3.2). The properties of the strict Chebyshev solution then imply that every optimal solution \bar{u} of (2.8) satisfies $\bar{u}_{j}=\varepsilon_{j}$ for $j \in J$. The proof is now completed by applying Lemma A. 1 to the pair of problems (2.6), (2.7) and using the connection between (2.7) and (2.8).

4. Existence and Characterization of $\lim _{p \rightarrow 1} x(p)$

Lemma 4.1. (i) The set of all optimal solutions of the L_{1} problem is given by

$$
M_{1}=\left\{x \in \mathbb{R}^{n} \mid a_{j}^{\prime} x=y_{j}, j \notin J ; \varepsilon_{j} a_{j}^{\prime} x \geqslant \varepsilon_{j} y_{j}, j \in J\right\},
$$

and there is an $\bar{x} \in M_{1}$ such that $\varepsilon_{j} a_{j}^{\prime} \bar{x}>\varepsilon_{j} y_{j}$ for all $j \in J$.
(ii) The set M_{1} is bounded.

Proof. (i) follows from Lemma A. 1 (applied to (2.6) and (2.7)) and Theorem 3.3(ii).
(ii) For $x \in M_{1}$ we have

$$
w_{1}=\bigvee_{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right)
$$

Since every term in this sum is nonnegative, we obtain

$$
\varepsilon_{j} y_{j} \leqslant \varepsilon_{j} a_{j}^{\prime} x \leqslant w_{1}+\varepsilon_{j} y_{j} \quad \text { for } \quad j \in J
$$

and therefore $\max _{j=1, \ldots m}\left|a_{j}^{\prime} x\right|$ is bounded on M_{1}. The result then follows from rank $A=n$.

Lemma 4.1 (i) together with Theorem 6.5 in $[10 \mid$ implies that the relative interior of M_{1} is given by

$$
\text { ri } M_{1}=\left\{x \in M_{1} \mid \varepsilon_{j} a_{j}^{\prime} x>\varepsilon_{j} y_{j} \text { for } j \in J\right\}
$$

From (2.5) it follows that, for sufficiently large q (and therefore for $1<p \leqslant \bar{p}$ with a $\bar{p}>1), \varepsilon_{j} a_{j}^{\prime} x(p)-\varepsilon_{j} y_{j}>0$ holds for all $j \in J$. Now, by Lemma 1.1(i) and Lemma 4.1(ii), there is a $c_{1}>0$ such that, for all $j \in J$,

$$
0<\varepsilon_{j} a_{j}^{\prime} x \quad-\varepsilon_{j} y_{j} \leqslant c_{1} \quad \text { for all } \quad x \in \operatorname{ri} M_{1},
$$

and

$$
0<\varepsilon_{j} a_{j}^{\prime} x(p)-\varepsilon_{j} y_{j} \leqslant c_{1} \quad \text { for all } \quad 1<p \leqslant \bar{p}
$$

By Taylor's theorem there is a $c_{2}>0$ such that, for $0<t \leqslant c_{1}$ and $1 \leqslant p \leqslant \bar{p}$,

$$
\left|t^{p}-t-(p-1) t \ln t\right| \leqslant c_{2}(p-1)^{2}
$$

holds.
Therefore, for $x \in \operatorname{ri} M_{1}$ we obtain

$$
\begin{aligned}
\grave{j}_{-1}^{m}\left|a_{j}^{\prime} x-y_{j}\right|^{p}= & _{j \in J}\left(\varepsilon_{i j} a_{j}^{\prime} x-\varepsilon_{j j} y_{j}\right)^{p} \\
= & \grave{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right)+(p-1) \grave{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right) \\
& \ln \left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right)+O\left((p-1)^{2}\right), \quad p \rightarrow 1 .
\end{aligned}
$$

Here the first sum is equal to w_{1}, and the function

$$
f(x)=\bigvee_{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right) \ln \left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right)
$$

may be extended continuously onto M_{1}, if $t \ln t$ is interpreted as 0 for $t=0$.
Lemma 4.2. f is strictly convex on M_{1}, and the problem

$$
\begin{equation*}
\min _{x \in M_{1}} f(x) \tag{4.1}
\end{equation*}
$$

has a unique optimal solution $x^{*} \in \operatorname{ri} M_{1}$.
Proof. For $x \in$ ri M_{1} we have

$$
\nabla^{2} f(x)=\searrow_{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x-\varepsilon_{j} y_{j}\right)^{-1} a_{j} a_{j}^{\prime}
$$

Assume that M_{1} contains more than one point (otherwise the result is trivial) and let $s \neq 0$ be such that $a_{j}^{\prime} s=0$ for $j \notin J$. Then, since rank $A=n$, there is a $j_{0} \in J$ such that $a_{j_{0}}^{\prime} s \neq 0$. This implies that the restriction of $\nabla^{2} f(x)$ to the subspace orthogonal to all $a_{j}, j \notin J$, is positive definite for all $x \in \operatorname{ri} M_{1}$ and thus yields the strict convexity of f.

It remains to show that the minimum of f on M_{1} is not attained on the relative boundary $M_{1} \backslash$ ri M_{1}. But this follows from the fact that, for every $x \in M_{1} \backslash \operatorname{ri} M_{1}$ and every $\bar{x} \in \operatorname{ri} M_{1}$, the directional derivative of f at x in the direction $\bar{x}-x$ is equal to $-\infty$.

Now we are ready to prove
Theorem 4.3. $\lim _{p \rightarrow 1} x(p)=x^{*}$.
Proof. Since, in general, $x(p) \notin M_{1}$ for $p>1, f$ is regarded in the
following as being defined and continuous on $\left\{x \in \mathbb{R}^{n} \mid \varepsilon_{j} a_{j}^{\prime} x \geqslant \varepsilon_{j} y_{j}, j \in J\right\}$. For $j \notin J$ we have $\left|u_{j}(\infty)\right|<1$, and from (2.5) and $1 /(q-1)=p-1$ it follows that

$$
\left|a_{j}^{\prime} x(p)-y_{j}\right|=(1-1 / q)^{q-1} \mid u_{j}(q)^{q-1}=O\left((p-1)^{2}\right), p \rightarrow 1
$$

This yields

$$
\begin{aligned}
\|A x(p)-y\|_{p}^{p}= & \bigcup_{j \notin J}\left|a_{j}^{\prime} x(p)-y_{j}\right|^{p}+\grave{j \in, J}\left(\varepsilon_{j} a_{j}^{\prime} x(p)-\varepsilon_{j} y_{j}\right)^{p} \\
= & \bigcup_{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x(p)-\varepsilon_{j} y_{j}\right)+(p-1) f(x(p)) \\
& +O\left((p-1)^{2}\right), \quad p \rightarrow 1 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\|A x^{*}-y\right\|_{p}^{p}= & \bigcup_{j \in J}\left(\varepsilon_{j} a_{j}^{\prime} x^{*}-\varepsilon_{j} y_{j}\right)+(p-1) f\left(x^{*}\right) \\
& +O\left((p-1)^{2}\right), \quad p \rightarrow 1,
\end{aligned}
$$

and therefore

$$
\begin{aligned}
&\|A x(p)-y\|_{p}^{p}-\left\|A x^{*}-y\right\|_{p}^{p} \\
&=\left(\sum_{j \in J} \varepsilon_{j} a_{j}\right)^{\prime}\left(x(p)-x^{*}\right)+(p-1)\left(f(x(p))-f\left(x^{*}\right)\right) \\
&+O\left((p-1)^{2}\right), \quad p \rightarrow 1
\end{aligned}
$$

From $A^{\prime} u(\infty)=0$ we obtain that

$$
\begin{aligned}
\left(\grave{j \in J}^{\varepsilon_{j}} a_{j}\right)^{\prime}\left(x(p)-x^{*}\right) & =\left(-\varliminf_{j \notin J} u_{j}(\infty) a_{j}\right)^{\prime}\left(x(p)-x^{*}\right) \\
& =-\frac{_{j \neq J}}{} u_{j}(\infty)\left(a_{j}^{\prime} x(p)-y_{j}\right) \\
& =O\left((p-1)^{2}\right), \quad p \rightarrow 1
\end{aligned}
$$

and thus

$$
\begin{align*}
\|A x(p)-y\|_{p}^{p}-\left\|A x^{*}-y\right\|_{p}^{p}= & (p-1)\left(f(x(p))-f\left(x^{*}\right)\right) \\
& +O\left((p-1)^{2}\right), \quad p \rightarrow 1 . \tag{4.2}
\end{align*}
$$

From the optimality of $x(p)$ it follows that the left-hand side of (4.2) is nonpositive for $p>1$.

Now let $\tilde{x} \in M_{1}$ be a cluster point of $x(p), p \rightarrow 1$, and $\left(p_{k}\right)$ a sequence with $\lim _{k \rightarrow \infty} p_{k}=1$ and $\lim _{k \rightarrow \infty} x\left(p_{k}\right)=\tilde{x}$. Then $f(\tilde{x}) \geqslant f\left(x^{*}\right)$, and (4.2) implies that $\lim _{k \rightarrow x} f\left(x\left(p_{k}\right)\right)=f(\tilde{x})=f\left(x^{*}\right)$ and therefore $\tilde{x}=x^{*}$.

5. Some Remarks and Examples

From Lemma 4.1(i) and Theorem 3.3.(ii) it follows immediately

Lemma 5.1. (i) The L_{1} problem has a unique optimal solution if and only if span $\left\{a_{j} \mid j \notin J\right\}=1 ?^{n}$.
(ii) The dual problem (2.8) has a unique optimal solution if and only if the set $\left\{a_{j} \mid j \notin J\right\}$ is linearly independent.

Let $|J|$ denote the cardinality of the set J. Then we obtain

Lemma 5.2. Let A satisfy the Haar condition (that is, every $n \times n$ submatrix of A is nonsingular). Then
(i) the L_{1} problem has a unique optimal solution if and only if $|J| \leqslant m-n$,
(ii) the problem (2.8) has a unique optimal solution if and only if $|J| \geqslant$ $m-n$.

To determine $\lim _{p-1} x(p)$ if the optimal L_{1} solution is not unique we have to solve problem (4.1); since this is essentially a strictly convex minimization problem under linear equality constraints, it can be solved easily by existing efficient algorithms. But to be able to formulate problem (4.1) we need $u(\infty)$ or, at least, the set J and the $\varepsilon_{j}, j \in J . u(\infty)$ can be determined by applying to problem (3.2) an algorithm computing the strict Chebyshev solution (see $|4|$ or $|1|$). Alternatively, the set J may be identified by solving the L_{p} problem for a value of p "sufficiently" close to 1 : an algorithm for this problem is described in $|5|$.

If A satisfies the Haar condition, then Lemma 5.2 shows that, if the optimal L_{1} solution is not unique, $u(\infty)$ is the unique optimal solution of problem (2.8) and thus can be computed simply by solving this linear problem.

Finally, two examples are discussed, both having several L_{1} solutions. The first one appears in $\mid 2$, p. $44 \mid$. Here $n=2, m=6$, and though the Haar condition is violated, $u(\infty)=(1,-1, \cdots 1,0,-1,1)^{\prime}$ is unique. The set M_{1} of all optimal L_{1} solutions can be described by $2 x_{1}+4 x_{2}=11.1$ and $1.77 \leqslant x_{1} \leqslant 2.51666 \ldots$. By eliminating one variable problem (4.1) can be reduced to a one-dimensional minimization problem. The solution
$x^{*}=(2.08802984,1.73098508)^{\prime}$ differs considerably from the value reported at the end of $|8|$.

The second example is taken from $|7|$ and has

$$
A=\left(\begin{array}{rr}
1 & 2 \\
2 & 3 \\
3 & 5 \\
6 & 10
\end{array}\right), \quad y=\left(\begin{array}{r}
6 \\
9 \\
14 \\
24
\end{array}\right)
$$

Again $u(\infty)=(-1,-1,-1,1)^{\prime}$ is unique, and M_{1} is defined by the four inequalities

$$
\begin{array}{r}
-x_{1}-2 x_{2} \geqslant-6, \\
-2 x_{1}-3 x_{2} \geqslant-9, \\
-3 x_{1}-5 x_{2} \geqslant-14, \\
6 x_{1}+10 x_{2} \geqslant 24 .
\end{array}
$$

The two-dimensional problem (4.1) has the optimal solution

$$
x^{*}=(1.18241272,1.81758728)^{\prime}
$$

which again differs from the value computed in $|7|$.

Appendix

For the linear programming problem

$$
\begin{equation*}
\min _{x \in \mathbb{R} n} c^{\prime} x \quad \text { s.t. } \quad a_{j}^{\prime} x \leqslant b_{j}, j=1, \ldots, m \tag{A.1}
\end{equation*}
$$

we denote the set of all optimal solutions by M_{P} and assume that $M_{p} \neq \varnothing$. Then, with $A^{\prime}=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)^{\prime}$, the dual problem is given by

$$
\begin{equation*}
\min _{u \in \mathbb{F} m^{n}} b^{\prime} u \quad \text { s.t. } \quad A^{\prime} u=-c, u \geqslant 0 \tag{A.2}
\end{equation*}
$$

with M_{D} denoting the set of all optimal solutions.

Lemma A.l. There is a set $K \subset\{1, \ldots, m\}$ such that:
(1) $M_{P}=\left\{x \in \mathbb{R}^{n} \mid a_{j}^{\prime} x=b_{j}, j \in K ; a_{j}^{\prime} x \leqslant b_{j}, j \notin K\right\}$,
and there is an $\bar{x} \in M_{P}$ satisfying $a_{j}^{\prime} \bar{x}<b_{j}$ for all $j \notin K$;
(2) $M_{D}=\left\{u \in \mathbb{R}^{m} \mid A^{\prime} u=-c, u \geqslant 0 ; u_{j}=0\right.$ for $\left.j \notin K\right\}$,
and there is a $\hat{u} \in M_{l}$ satisfying $\hat{u}_{j}>0$ for all $j \in K$.
Proof. Define $K=\left\{j \mid a_{j}^{\prime} x=b_{j}\right.$ for all $\left.x \in M_{p}\right\}$.
(1) The definition of K implies that, for every $j \notin K$, there is an $x^{(j)} \in M_{p}$ such that $a_{j}^{\prime} x^{(j)}<b_{j}$. Let k denote the cardinality of K, and define

$$
\bar{x}=(m-k) \quad \bigcup_{j \notin h} x^{(j)}
$$

(if $k=m$ choose any $\bar{x} \in M_{P}$). Then $\bar{x} \in M_{p}$, and $a_{j}^{\prime} \bar{x}<b_{j}$ holds for every $j \notin K$.

Let $C=\left\{l^{\prime} \in \mathbb{R}^{n} \mid y=\sum_{j \in K} u_{j} a_{j}, u_{j} \geqslant 0\right\}$ denote the convex cone generated by the vectors $a_{j}, j \in K$. The optimality conditions for \bar{x} then imply that $-c \in C$. Therefore, the objective function of (A.1) is constant on $\left\{x \mid a_{j}^{\prime} x=b_{j}, j \in K\right\}$, and M_{p} is given by the formula in part (1) of the lemma.
(2) Let $\bar{u} \in M_{I}$ be a vector of Lagrange multipliers corresponding to \bar{x}; that is.

$$
-c=\searrow_{j \in K} \bar{u}_{j} a_{j} \quad \text { with } \quad \bar{u}_{j} \geqslant 0
$$

For an arbitrary $\tilde{u} \in M_{D}$, let \tilde{x} be an associate optimal solution of (A.1). Then

$$
-c=_{j \in K} \bar{u}_{j} a_{j}=\searrow_{i}^{m} \tilde{u}_{j} a_{j},
$$

and therefore

$$
\grave{j}_{j \notin K} \tilde{u}_{j} a_{j}=\bigcup_{j \in K}\left(\bar{u}_{j}-\tilde{u}_{j}\right) a_{j}
$$

This gives

$$
\begin{equation*}
\bigcup_{j \notin K} \tilde{u}_{j} a_{j}^{\prime}(\bar{x}-\tilde{x})=_{j \in K}\left(\bar{u}_{j}-\tilde{u}_{j}\right) a_{j}^{\prime}(\bar{x}-\tilde{x})=0 \tag{A.3}
\end{equation*}
$$

But, for $j \notin K, \tilde{u}_{j}>0$ implies that

$$
a_{j}^{\prime}(\bar{x}-\tilde{x})=a_{j}^{\prime} \bar{x}-a_{j}^{\prime} \tilde{x}<b_{j}-a_{j}^{\prime} \tilde{x}=0,
$$

and thus (A.3) cannot be true unless $\tilde{u}_{j}=0$ holds for all $j \notin K$.
Furthermore, $-c \in \operatorname{ri} C$. Otherwise there is an $s \in \operatorname{span}\left\{a_{j} \mid j \in K\right\}, s \neq 0$, such that $c^{\prime} s=0$ and $a_{j}^{\prime} s \leqslant 0$ for $j \in K$. But then $a_{j}^{\prime} s<0$ for at least one
$j \in K$, and $\bar{x}+\sigma s \in M_{P}$ holds for sufficiently small $\sigma>0$, in contradiction to part (1) of the lemma. Now, by Theorem 6.9 in $|10|$ it follows that

$$
\text { ri } C=\left\{y \in \mathbb{R}^{n} \mid y=\sum_{j \in K} u_{j} a_{j}, u_{j}>0 \text { for all } j \in K\right\}
$$

and this implies the existence of \hat{u}.

References

1. N. N. Abdelmalek, Computing the strict Chebyshev solution of overdetermined linear equations, Math. Comp. 31 (1977), 974-983.
2. E. W. Cheney, "Introduction to Approximation Theory." McGraw-Hill. New York, 1966.
3. J. Descloux, Approximations in L^{P} and Chebyshev approximations, J. S/AM 11 (1963), 1017-1026.
4. C. S. Duris and M. G. Temple, A finite step algorithm for determining the "strict" Chebyshev solution to $A x=b$, SIAM J. Numer. Anal. 10 (1973), 690-699.
5. J. FISCHER. An algorithm for discrete linear L_{p} approximation, Numer. Math. 38 (1981). 129-139.
6. O. L. Mangasarian, "Nonlinear Programming," McGraw-Hill, New York, 1969.
7. G. Merle and H. Späth, Computational experience with discrete L_{p}-approximation. Computing 12 (1974), 315-321.
8. R. W. OwENS, An algorithm for best approximate solutions of $A x=b$ with a smooth strictly convex norm, Numer. Math. 29 (1977), 83-91.
9. J. R. Rice. "The Approximation of Functions," Vol. II, Addison-Wesley, Reading. Mass., 1969.
10. R. T. Rockafellar, "Convex Analysis." Princeton Univ. Press, Princeton, N. J., 1970.
